Instructions for Use
 Gas meter corner ball valve with integrated gas flow monitor type K

Table of contents

1 About these instructions for use 3
1.1 Target groups 3
1.2 Labelling of notes 3
1.3 About this translated version 4
2 Product information 5
2.1 Standards and regulations 5
2.2 Intended use 7
2.2.1 Areas of use 7
2.2.2 Media 7
2.3 Product description 7
2.3.1 Overview 7
2.3.2 Threaded connection 8
2.3.3 Markings on components 8
2.3.4 Compatible components 9
2.3.5 Operating mode 9
2.3.6 Technical data 11
2.4 Information for use 12
2.4.1 Corrosion 12
3 Handing 13
3.1 Assembly information 13
3.1.1 Mounting instructions 13
3.2 Assembly 14
3.2.1 Leakage test 14
3.3 Maintenance 14
3.4 Disposal 15

1 About these instructions for use

Trade mark rights exist for this document; for further information, go to viega.com/legal.

1.1 Target groups

The information in this instruction manual is directed at the following groups of people:

- contract installers registered in the installers' register of a utility company
- professional specialist companies for the construction, maintenance and alteration of a natural or liquid gas system

Liquid gas systems may only be constructed, maintained or altered by companies that have the necessary qualification and experience.

Individuals without the abovementioned training or qualification are not permitted to mount, install and, if required, maintain this product. This restriction does not extend to possible operating instructions.

The installation of Viega products must take place in accordance with the general rules of engineering and the Viega instructions for use.

1.2 Labelling of notes

Warning and advisory texts are set aside from the remainder of the text and are labelled with the relevant pictographs.

DANGER!

This symbol warns of possible life-threatening injury.

WARNING!

This symbol warns of possible serious injury.

CAUTION!

This symbol warns of possible injury.

NOTICE!
This symbol warns of possible damage to property.

1.3 About this translated version

This instruction for use contains important information about the choice of product or system, assembly and commissioning as well as intended use and, if required, maintenance measures. The information about the products, their properties and application technology are based on the current standards in Europe (e. g. EN) and/or in Germany (e. g. DIN/DVGW).

Some passages in the text may refer to technical codes in Europe/ Germany. These should serve as recommendations in the absence of corresponding national regulations. The relevant national laws, standards, regulations, directives and other technical provisions take priority over the German/European directives specified in this manual: The information herein is not binding for other countries and regions; as said above, they should be understood as a recommendation.

2 Product information

2.1 Standards and regulations

The following standards and regulations apply to Germany / Europe. National regulations can be found on the relevant web site of your country at viega.com/standards.

Regulations from section: Fields of application

Scope / Notice	Regulations applicable in Ger- many
Planning, execution, modification and operation of gas installations	DVGW-TRGI 2008
Planning, execution, modification and operation of liquid gas instal- lations	DVFG-TRF 2012

Regulations from section: Media

Scope / Notice	Regulations applicable in Ger- many
Gas characteristics	DVGW-Arbeitsblatt G 260

Regulations from section: Overview

Scope / Notice	Regulations applicable in Ger- many
Requirements in gas fittings	DIN EN 331
Criteria for leak tightness	DIN 3537-1

Regulations from section: Threaded connection

Scope / Notice	Regulations applicable in Ger- many
Threaded pair	DIN EN 10226-1
Permitted sealants	DIN 30660
Permitted sealants	DIN EN 751-2

Regulations from section: Functionality

Scope / Notice	Regulations applicable in Ger- many
Inspection for gas flow monitor	DVGW-VP 305-1

Regulations from section: Technical data

Scope / Notice	Regulations applicable in Ger- many
Scope for the operating tempera- ture	DIN EN 331

Regulations from section: Corrosion

Scope / Notice	Regulations applicable in Ger- many
Corrosion protection	DIN 30672
Corrosion protection for external pipes	DVGW-TRGI 2008, Point 5.2.7.1
Corrosion protection for internal pipelines	DVGW-TRGI 2008,, Point 5.2.7.2
Corrosion protection for external pipes	DVFG-TRF 2012,, Point 7.2.7.1
Corrosion protection for internal pipelines	DVFG-TRF 2012,, Point 7.2.7.2

Regulations from section: Notes on mounting

Scope / Notice	Regulations applicable in Ger- many
Gas installations	DVGW-TRGI 2008
Liquid gas installations	DVFG-TRF 2012
Application of active and passive protection measures	DVGW-TRGI 2008, Point 5.3.9
Use of sealing elements	DIN 3376-2

Regulations from section: Leakage test

Scope / Notice	Regulations applicable in Ger- many
Leakage test for gas installations	DVGW-TRGI 2008, Point 5.6
Leakage test for liquid gas instal- lations	DVFG-TRF 2012, Point 8

Regulations from section: Maintenance

Scope / Notice	Regulations applicable in Ger- many
Ensuring and maintaining a safe operating condition	DVGW-TRGI 2008 Appendix 5c

2.2 Intended use

- Coordinate the use of the model for areas of use and media other than those described with the Viega Service Center.

2.2.1 Areas of use

Use is possible in the following areas among others:

- Gas installations
- Liquid gas installations

For planning, execution, modification and operation of gas installations, observe the applicable regulations, see ξ 'Regulations from section: Fields of application' on page 5.

2.2.2 Media

The model is also suitable for the following media, amongst others:

- Gases, see ${ }^{\circledR y}$ 'Regulations from section: Media' on page 5
- Liquid gases, only in the gaseous state for domestic and commercial applications, see ${ }^{〔}$ 'Regulations from section: Media' on page 5.

2.3 Product description

2.3.1 Overview

Viega gas fittings conform with the requirements of the applicable regulations. The gas fittings have been tested and certified by the DVGW in accordance with the following criteria, see \triangleq Chapter 2.1 'Standards and regulations' on page 5:

- Leak tightness
- Higher thermal resistance (HTR)

The model is equipped as follows:

- casing made of brass
- inlet side with R external thread
- outlet side with R external thread screw fitting
- test opening < 1 mm
- test screw in the dimension $G 1 / 8$
- gas flow monitor (GFM)

In addition, the model is equipped with a G 2 thread, onto which the gas meter is connected.

The model is lead-sealable and, in addition, can be locked using a commercially available padlock.

The yellow protective sleeve on the actuating lever shows the medium to be gas.

A gas flow monitor (GFM) type K is integrated into this model. A line compensation across the length to be protected is not required when a gas flow monitor type K is installed in metallic pipelines.

You can find more detailed information about the GFM in the technical data about the GFM \Longleftrightarrow Chapter 2.3.6 'Technical data' on page 11.

The model is available in the dimension R 1 with the following GFM: Volume flow Gas $2.5 \mathrm{~m}^{3} / \mathrm{h} / 4.0 \mathrm{~m}^{3} / \mathrm{h} / 6.0 \mathrm{~m}^{3} / \mathrm{h}$.

2.3.2 Threaded connection

Prerequisite for a threaded connection, which seals via a thread, is a threaded pair in accordance with applicable regulations, see $\stackrel{\leftrightarrow}{ }$ 'Regulations from section: Threaded connection' on page 5. Pursuant to these regulations, a permitted threaded pair comprises a conical external thread and a cylindrical internal thread, e.g. R 3/4 and Rp $3 / 4$.
Only use commercially available and chloride-free, DVGW approved sealant in accordance with the applicable regulations to seal threads, see " ${ }^{〔}$ 'Regulations from section: Threaded connection' on page 5.

Excessive use of sealants can be detrimental to the function of the integrated gas flow monitor.

2.3.3 Markings on components

■ MOP5 for maximum operating pressure 0.5 MPa (5 bar)

- GT1 for maximum operating pressure with HTR requirement 0.1 MPa (1 bar)
- flow direction indicator
- DVGW writing
- HTR marking
- batch number

GFM specification plate

Fig. 1: Protective sleeve on the actuating lever

The protective sleeve on the actuating lever is marked with the following information about the gas flow monitor:

- manufacturer
- GFM Type
- nominal flow
- operating pressure range
- position indicator
- DVGW-G

2.3.4 Compatible components

Please contact the Viega Service Center for questions on this subject.

2.3.5 Operating mode

Gas flow monitor (GFM)

A gas flow monitor is an active protective measure in a gas installation. A GFM interrupts the flow of gas if an unintended release of gas occurs. The GFM is tested in accordance with the applicable directives, see \& Chapter 2.1 'Standards and regulations' on page 5.

Below, the following unit symbols and denominations are used:
$\dot{V}_{\mathrm{N}}=$ Nennvolumenstrom
$\dot{V}_{S}=$ Schließdurchfluss
$\dot{V}_{U}=$ Überströmvolumen

Fig. 2: Legend

Fig. 3: Normal operation

Fig. 4: Fault: Valve closed

Fig. 5: Fault: Valve closed, overflowing gas

Fig. 6: Fault repaired

The GFM is fully open in normal operation. It is configured for the nominal volume flow.
The operating volume flow is stable. The Δp from p_{1} and p_{2} is constant.

In the case of a fault, there is a drop in the pressure in the following pipes so that the flow rate increases sharply. The shut-off flow is reached due to the pressure loss in the range p_{2}. p_{1} presses against the valve plate and interrupts the flow.

After the fault has been rectified, pressures p_{1} and p_{2} re-balance, by gas flowing from the overflow opening.
Overflow volume $=30 \mathrm{l} / \mathrm{h}$ with 100 MPa (100 mbar)

The valve plate opens with help from p_{2} and the spring force against p_{1}. The gas flow monitor is back in normal operation.

2.3.6 Technical data

Observe the following operating conditions for the installation of the model:

Use	Gas installation	Liquid gas installation
Operating temperature	$-20^{\circ} \mathrm{C}$ up to $+70^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ up to $+70^{\circ} \mathrm{C}$
Operating pressure	$\begin{gathered} \leq 0.5 \mathrm{MPa}(5 \mathrm{bar}) \\ (\mathrm{MOP} 5) \\ \leq 0.1 \mathrm{MPa}(1 \mathrm{bar}) \\ (\mathrm{HTR} / \mathrm{GT} 1)^{2)} \end{gathered}$	$\begin{gathered} \leq 0.5 \mathrm{MPa}(5 \mathrm{bar}) \\ (\mathrm{MOP} 5)^{1)} \\ \leq 0.1 \mathrm{MPa}(1 \mathrm{bar}) \\ (\mathrm{HTR} / \mathrm{GT} 1)^{2)} \end{gathered}$

${ }^{1)}$ Maximum pressure - equates to the pick-up pressure of the SSV in the pressure regulating valve
${ }^{2}$) Operating pressure at HTR requirement max. 0.1 MPa (1 bar) (GT1)
In accordance with the applicable regulations, the scope of the operating temperature is between $-20^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}$, see $\stackrel{\text { \& }}{ }$ Chapter 2.1 'Standards and regulations' on page 5.

Integrated gas flow monitor

Installation position	horizontal
Design	I
Operating temperature	$-20^{\circ} \mathrm{C}$ up to $+70^{\circ} \mathrm{C}$
Operating pressure	$15-100 \mathrm{hPa}(15-100 \mathrm{mbar})$
Pressure loss	$\leq 0.5 \mathrm{hPa}(0.5 \mathrm{mbar})$
Closing factor f_{S}	1.45
Overflow opening	$\leq 30 \mathrm{l} / \mathrm{h}$ at $100 \mathrm{hPa}(100 \mathrm{mbar})$

The shut-off flow is dependent on the gas volume flow of the integrated GFM.

2.4 Information for use

2.4.1 Corrosion

Depending on the area of use, corrosion protection measures may have to be taken into account.

One differentiates between external pipelines (underground and overground external pipelines), as well as internal pipelines.
Observe the pertinent guidelines for corrosion protection, see ${ }^{\star}$ 'Regulations from section: Corrosion' on page 6.

Overground pipes and fittings in rooms do not normally require external corrosion protection.
There are exceptions in the following cases:

- There is external contact with materials containing chloride.
- Stainless steel pipes must not come into contact with building materials or mortar containing chloride.
- There is contact with aggressive building materials such as materials containing nitrite or ammonium.
- in aggressive surroundings

3 Handling

3.1 Assembly information

3.1.1 Mounting instructions

Checking system components

System components may, in some cases, become damaged through transportation and storage.

- Check all parts.
- Replace damaged components.
- Do not repair damaged components.
- Contaminated components may not be installed.

Mounting conditions

Observe the following when mounting:

- Observe flow direction indicator.
- Observe required space for the gas meters according to the manufacturer's information.
- Do not cover or paint the model.
- Do not install the model in heat zones (e. g. with hot emissions or strong heat radiation.
■ Use suitable tools.

NOTICE!

Use sealing element once only
Each time you removed the connection screw fitting, replace the sealing element by a new one; also refer to ↔y 'Regulations from section: Notes on mounting' on page 6.

Exceptions, selection criteria and the arrangement of the components are described in the applicable regulations, see $\stackrel{y}{ }>$ Chapter 2.1 'Standards and regulations' on page 5.

NOTICE!

Use active and possibly passive protection measures to protect a gas installation from tampering by unauthorised persons.

Generally use active protective measures.
Choose passive protective measures matching the installation, and use them.

The use of active and passive protection measures is specified in the applicable regulations, see $\stackrel{\leftrightarrow}{ }>$ Chapter 2.1 'Standards and regulations' on page 5.

3.2 Assembly

3.2.1 Leakage test

The installer must perform a leakage test before commissioning
This test is carried out on a system that is finished but not yet covered.
Comply with the general rules of engineering and the applicable directives, see ${ }^{\mu} /$ 'Regulations from section: Leakage test' on page 6.

Document the result.
> - By employing an overflow cap (model G2360), you can also test the continuous gas installation without mounted gas meters.

3.3 Maintenance

The gas installation must be given a visual inspection, e. g. by the owner, once a year.

Serviceability and leak tightness must be checked every twelve years by an installation contractor.

To be covered by the warranty and to ensure the safe operation of the gas installations, operate and maintain them as intended. For more detailed information, refer to the applicable regulations, see ${ }^{4}$ 'Regulations from section: Maintenance' on page 7.

3.4 Disposal

Separate the product and packaging materials (e. g. paper, metal, plastic or non-ferrous metals) and dispose of in accordance with valid national legal requirements.

