
Gebrauchsanleitung

Prestabo LF

Pressverbindersystem aus unlegiertem Stahl für unlegierte Stahlrohre

System Prestabo LF **Baujahr (ab)** 08/2013

2

Inhaltsverzeichnis

1.1 Zielgruppen		
_	eichnung von Hinweisen	
Produktin	formation	
2.1 Norme	n und Regelwerke	
	mungsgemäße Verwendung	
2.2.1		
2.2.2		
2.3 Produk	ktbeschreibung	
2.3.1	Übersicht	
2.3.2	Rohre	
2.3.3	Pressverbinder	
2.3.4	Dichtelemente	
2.3.5	Kennzeichnungen an Bauteilen	
2.4 Verwer	_	
2.4.1	Korrosion	
2.4.1 Handhab u	Korrosion	
2.4.1 Handhabu 3.1 Transp	Ingort	
2.4.1 Handhabu 3.1 Transp 3.2 Lageru	Korrosion ung ort	
2.4.1 Handhabu 3.1 Transp 3.2 Lageru 3.3 Montag 3.3.1	Korrosion ing geinformationen Montagehinweise	
2.4.1 Handhabu 3.1 Transp 3.2 Lageru 3.3 Monta 3.3.1 3.3.2	Potenzialausgleich	
2.4.1 Handhabu 3.1 Transp 3.2 Lageru 3.3 Monta 3.3.1 3.3.2 3.3.3	Korrosion ung ort ung geinformationen Montagehinweise Potenzialausgleich Zulässiger Austausch von Dichtelementen	
2.4.1 Handhabu 3.1 Transp 3.2 Lageru 3.3 Montae 3.3.1 3.3.2 3.3.3 3.3.4	Korrosion	
2.4.1 Handhabu 3.1 Transp 3.2 Lageru 3.3 Monta 3.3.1 3.3.2 3.3.3	Korrosion ung ort ung geinformationen Montagehinweise Potenzialausgleich Zulässiger Austausch von Dichtelementen	
2.4.1 Handhabu 3.1 Transp 3.2 Lageru 3.3 Monta 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	Korrosion	
2.4.1 Handhabu 3.1 Transp 3.2 Lageru 3.3 Montae 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.4 Montae 3.4.1	Ing	
2.4.1 Handhabu 3.1 Transp 3.2 Lageru 3.3 Monta 3.3.2 3.3.3 3.3.4 3.3.5 3.4 Monta 3.4.1 3.4.2	Ing	
2.4.1 Handhabu 3.1 Transp 3.2 Lageru 3.3 Monta 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.4 Monta 3.4.1 3.4.2 3.4.3	Ing	
2.4.1 Handhabu 3.1 Transp 3.2 Lageru 3.3 Monta 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.4 Monta 3.4.1 3.4.2 3.4.3 3.4.4	Ing	
2.4.1 Handhabu 3.1 Transp 3.2 Lageru 3.3 Monta 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.4 Monta 3.4.1 3.4.2 3.4.3	Ing	

1 Über diese Gebrauchsanleitung

Für dieses Dokument bestehen Schutzrechte, weitere Informationen erhalten Sie unter *viega.de/rechtshinweise*.

1.1 Zielgruppen

Die Informationen in dieser Anleitung richten sich an Heizungs- und Sanitärfachkräfte bzw. an unterwiesenes Fachpersonal.

Für Personen, die nicht über die o. a. Ausbildung bzw. Qualifikation verfügen, sind Montage, Installation und ggf. Wartung dieses Produkts unzulässig. Diese Einschränkung gilt nicht für mögliche Hinweise zur Bedienung.

Der Einbau von Viega Produkten muss unter Einhaltung der allgemein anerkannten Regeln der Technik und der Viega Gebrauchsanleitungen erfolgen.

1.2 Kennzeichnung von Hinweisen

Warn- und Hinweistexte sind vom übrigen Text abgesetzt und durch entsprechende Piktogramme besonders gekennzeichnet.

GEFAHR!

Warnt vor möglichen lebensgefährlichen Verletzungen.

WARNUNG!

Warnt vor möglichen schweren Verletzungen.

VORSICHT!

Warnt vor möglichen Verletzungen.

HINWEIS!

Warnt vor möglichen Sachschäden.

Zusätzliche Hinweise und Tipps.

2 Produktinformation

2.1 Normen und Regelwerke

Regelwerke aus Abschnitt: Einsatzbereiche

Geltungsbereich / Hinweis	In Deutschland geltendes Regelwerk
Planung, Errichtung, Betrieb und Instandhaltung von Feuerlöschan- lagen	DIN 14462

Regelwerke aus Abschnitt: Medien

Geltungsbereich / Hinweis	In Deutschland geltendes Regelwerk
Eignung für salzarmes / salzhaltiges Trinkwasser	VDI-Richtlinie 2035, Tab. 1
Eignung für Heizungswasser in Pumpen-Warmwasser-Heizungsanlagen	VDI-Richtlinie 2035, Blatt 1 und Blatt 2

Regelwerke aus Abschnitt: Dichtelemente

Geltungsbereich / Hinweis	In Deutschland geltendes Regelwerk
Einsatzbereich des EPDM-Dicht- elements	DIN EN 12828
Heizung	

Regelwerke aus Abschnitt: Korrosion

Geltungsbereich / Hinweis	In Deutschland geltendes Regelwerk
Sauerstoffeintrag bei Wiederauffüllen eines Systems	DIN EN 14868
Sauerstoffgehalt in salzarmem / salzhaltigem Wasser	VDI-Richtlinie 2035 Tab. 1
Lückenloser äußerer Korrosions- schutz bei Einsatz in Kühlkreis- läufen	DIN 50929
Lückenloser äußerer Korrosions- schutz bei Einsatz in Kühlkreis- läufen	AGI-Arbeitsblatt Q 151

Regelwerke aus Abschnitt: Lagerung

Geltungsbereich / Hinweis	In Deutschland geltendes Regel- werk
Anforderungen für die Lagerung der Materialien	DIN EN 806-4, Kapitel 4.2

Regelwerke aus Abschnitt: Flanschverbindung herstellen

Geltungsbereich / Hinweis	In Deutschland geltendes Regelwerk
Qualifizierung von Personal für die Montage von Flanschverbindungen	VDI-Richtlinie 2290
Ermittlung von Anzugsmomenten	DIN EN 1591-1

Regelwerke aus Abschnitt: Dichtheitsprüfung

Geltungsbereich / Hinweis	In Deutschland geltendes Regelwerk
Prüfung an der fertiggestellten, jedoch noch nicht verdeckten Anlage	DIN EN 806-4
Dichtheitsprüfung für Wasser- Installationen	ZVSHK-Merkblatt: "Dichtheitsprüfungen von Trink-wasserinstallationen mit Druckluft, Inertgas oder Wasser"
Anforderungen an Füll- und Ergänzungswasser	VDI 2035



2.2 Bestimmungsgemäße Verwendung

Stimmen Sie die Nutzung des Systems für andere als die beschriebenen Einsatzbereiche und Medien mit Viega ab.

2.2.1 Einsatzbereiche

Das System ist für den Einsatz in Industrie- und Heizungs-Installationen bestimmt. Das System ist nicht für die Verwendung in Trinkwasserinstallation geeignet. Rohre und Pressverbinder sind deshalb mit einem roten Symbol "Kein Trinkwasser" gekennzeichnet.

Labs-freie Produkte sind frei von Lackbenetzung störenden Substanzen, z. B. Ölen, Fetten und Silikon.

Abb. 1: "Kein Trinkwasser"

Das Pressverbindersystem ist für den Nenndruck PN 16 ausgelegt.

Der Einsatz ist u. a. in folgenden Bereichen möglich:

- Lackieranlagen
- Industrie- und Heizungs-Installationen
- nasse Sprinkleranlagen (mit sendzimirverzinktem Rohr)
- Feuerlöschanlagen nass, siehe 🤄 "Regelwerke aus Abschnitt: Einsatzbereiche" auf Seite 4
 - ausschließlich mit sendzimirverzinktem Rohr
- Solaranlagen mit Flachkollektoren
- Druckluftanlagen
- Kühlwasserleitungen (geschlossener Kreislauf)
- Vakuumanlagen (auf Anfrage)
- Anlagen für technische Gase (auf Anfrage)

Für Informationen über Einsatzbereiche der Dichtelemente siehe Kapitel 2.3.4 "Dichtelemente" auf Seite 11.

Das System ist für die Verlegung in warmer und trockener Atmosphäre bestimmt. Die Rohre dürfen keiner dauerhaften Feuchtigkeit ausgesetzt sein. Andernfalls kann das System korrodieren, siehe *Kapitel 2.4.1 "Korrosion"* auf Seite 15.

2.2.2 Medien

Das System kann in geschlossenen Wasserkreisläufen eingesetzt werden, in denen kein Sauerstoffeintrag während des Betriebs möglich ist

Für den Sauerstoffgehalt gelten folgende Grenzwerte, siehe % "Regelwerke aus Abschnitt: Medien" auf Seite 4:

- salzarmes Wasser ≤ 0,1 mg/l
- salzhaltiges Wasser < 0,02 mg/l

Das System ist u. a. für folgende weitere Medien geeignet:

Geltende Richtlinien siehe \$ "Regelwerke aus Abschnitt: Medien" auf Seite 4.

- Heizungswasser für geschlossene Pumpen-Warmwasser-Heizungsanlagen
- Druckluft (trocken) gemäß der Spezifikation der verwendeten Dichtelemente
 - EPDM bei Ölkonzentration < 25 mg/m³
- Frostschutzmittel, Kühlsolen bis zu einer Konzentration von 50 %

HINWEIS!

Setzen Sie bei Kühlwasser mit Zusätzen (z. B. Frostschutzmittel etc.) keine sendzimirverzinkten Rohre ein. Andernfalls kann sich die Zinkbeschichtung im Innenrohr lösen und Anlagenteile verstopfen.

2.3 Produktbeschreibung

2.3.1 Übersicht

Das Rohrleitungssystem besteht aus labs-freien Pressverbindern in Verbindung mit unlegierten, silikonfreien Stahlrohren und den dazu passenden Presswerkzeugen.

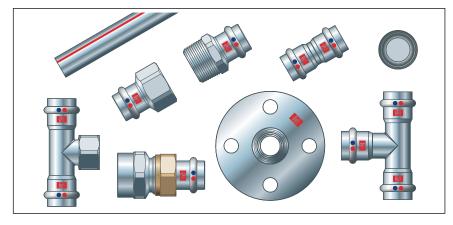


Abb. 2: Prestabo LF-Sortimentauswahl

Die Systemkomponenten sind in folgenden Dimensionen verfügbar: d12 / 15 / 18 / 22 / 28 / 35 / 42 / 54.

2.3.2 Rohre

Prestabo-Rohre sind in einer Länge von 6 m verfügbar.

Von dem beschriebenen System sind folgende Rohre erhältlich:

Rohrart	Prestabo-Rohr	Prestabo-Rohr für Sonderanwendungen
Einsatzbereich	Industrie- und Hei- zungsanlagen	Sprinkler ¹⁾ - und Druckluftanlagen
d [mm]	12 / 15 / 18 / 22 / 28 / 35 / 42 / 54	15 ¹⁾ / 18 ¹⁾ / 22 / 28 / 35 / 42 / 54
Art der Verzinkung	außen galvanisch ver- zinkt	innen und außen sendzimirverzinkt
Dicke der Verzinkung	8–15 μm	15–27 μm
Schutzkappe	rot	weiß

¹⁾ Rohre mit 15 mm und 18 mm Durchmesser dürfen nicht in Sprinkleranlagen eingebaut werden, da diese nicht im VdS-Zertifikat enthalten sind.

Sendzimirverzinkte Rohre sind nicht für Heizungs- und Kühlanlagen geeignet.

Rohrkenndaten blankes Prestabo-Rohr

d x s [mm]	Volumen pro Meter Rohr [l/m]	Rohrgewicht [kg/m]
12 x 1,2	0,07	0,32
15 x 1,2	0,13	0,41
18 x 1,2	0,19	0,50
22 x 1,5	0,28	0,80
28 x 1,5	0,49	1,00
35 x 1,5	0,80	1,20
42 x 1,5	1,19	1,50
54 x 1,5	2,04	2,00

Rohrleitungsführung und Befestigung

Zur Befestigung der Rohre nur Rohrschellen mit chloridfreien Schallschutzeinlagen verwenden.

Die allgemeinen Regeln der Befestigungstechnik beachten:

- Befestigte Rohrleitungen nicht als Halterung für andere Rohrleitungen und Bauteile verwenden.
- Keine Rohrhaken verwenden.
- Abstand zu Pressverbindern einhalten.
- Ausdehnungsrichtung beachten: Fix- und Gleitpunkte planen.

Darauf achten, die Rohrleitungen so zu befestigen und vom Baukörper zu entkoppeln, dass sie keinen Körperschall infolge thermischer Längenveränderungen sowie möglicher Druckschläge auf den Baukörper oder andere Bauteile übertragen können.

Folgende Befestigungsabstände einhalten:

Abstand zwischen den Rohrschellen

d [mm]	Befestigungsabstand der Rohrschellen [m]
12,0	1,25
15,0	1,25
18,0	1,50
22,0	2,00
28,0	2,25
35,0	2,75
42,0	3,00
54,0	3,50

Längenausdehnung

Rohrleitungen dehnen sich bei Erwärmung aus. Die Wärmeausdehnung ist materialabhängig. Längenänderungen führen zu Spannungen innerhalb der Installation. Diese Spannungen müssen durch geeignete Maßnahmen ausgeglichen werden.

Bewährt haben sich:

- Fix- und Gleitpunkte
- Dehnungsausgleichsstrecken (Biegeschenkel)
- Kompensatoren

Wärmeausdehnungskoeffizienten verschiedener Rohrwerkstoffe

Material	Wärmeausdeh- nungskoeffizient α [mm/mK]	Beispiel: Längenausdehnung bei Rohrlänge $L=20 \text{ m}$ und $\Delta\theta=50 \text{ K}$ [mm]
Verzinkter Stahl	0,0120	12,0

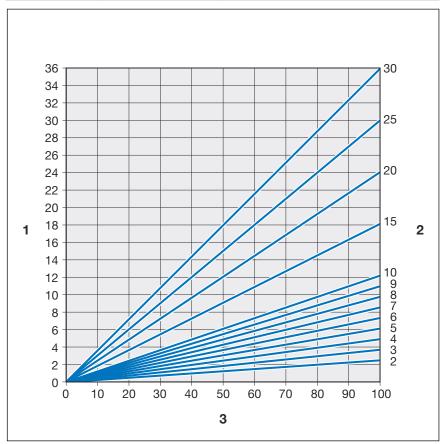
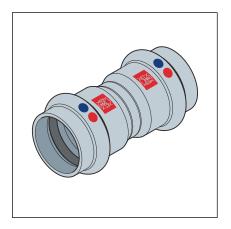


Abb. 3: Längenausdehnung Stahlrohre


- 1 Längenausdehnung [→]ΔI [mm]
- 2 Rohrlänge → I₀ [m]
- 3 Temperaturdifferenz → Δθ [K]

Die Längenausdehnung Δl lässt sich aus dem Diagramm ablesen oder kann mit folgender Formel rechnerisch ermittelt werden:

 $\Delta I = \alpha \text{ [mm/mK]} \times L \text{ [m]} \times \Delta \theta \text{ [K]}$

2.3.3 Pressverbinder

Die Pressverbinder haben eine umlaufende Sicke, in der das Dichtelement liegt. Beim Verpressen wird der Pressverbinder vor und hinter der Sicke verformt und unlösbar mit dem Rohr verbunden. Das Dichtelement wird beim Verpressen nicht verformt.

Abb. 4: Pressverbinder

SC-Contur

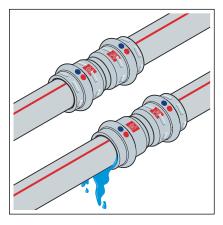


Abb. 5: SC-Contur

Viega Pressverbinder verfügen über die SC-Contur. Die SC-Contur ist eine vom DVGW zertifizierte Sicherheitstechnik und sorgt dafür, dass der Pressverbinder im unverpressten Zustand undicht ist. So fallen versehentlich nicht verpresste Verbindungen bei der Dichtheitsprüfung auf.

Viega gewährleistet, dass versehentlich nicht verpresste Verbindungen bei der Dichtheitsprüfung sichtbar werden:

- bei der nassen Dichtheitsprüfung im Druckbereich von 0,1–0,65 MPa (1,0–6,5 bar)
- bei der trockenen Dichtheitsprüfung im Druckbereich von 22 hPa-0,3 MPa (22 mbar-3,0 bar)

2.3.4 Dichtelemente

Die Pressverbinder sind werkseitig mit labs-freien EPDM-Dichtelementen ausgestattet.

Liegt zum Zeitpunkt der Verlegung der Anschlussleitung zum Einsatzbereich der Solarthermie der Kollektortyp (Flach-/Vakuum-Röhrenkollektoren) noch nicht fest, empfehlen Viega FKM-Dichtelemente in den Pressverbindern zu verwenden.

Einsatzbereich des EPDM-Dichtelements

Einsatzbereich	Heizung	Solaranlagen	Kühlkreisläufe	Druckluft	Technische Gase
Anwendung	Pumpen-Warm- wasser-Hei- zungsanlage	Solarkreislauf	Sekundärkreis- lauf geschlossen	alle Rohrlei- tungsabschnitte	alle Rohrlei- tungsabschnitte
Betriebstempe- ratur [T _{max}]	95 °C	_	≥ -25 °C	60 °C	_
Betriebsdruck [P _{max}]	_	0,6 MPa (6 bar)	1,6 MPa (16 bar)	1,6 MPa (16 bar)	_
Bemerkungen	nach geltenden Richtlinien ²⁾ T _{max} : 105 °C bei Heizkörper- anbindung T _{max} : 95 °C	für Flachkollek- toren	Inhibitoren für Kaltwasser- sätze, siehe Werkstoffbe- ständigkeit	trocken, Ölgehalt < 25 mg/m ³	1) 3)

¹⁾ Abstimmung mit Viega erforderlich

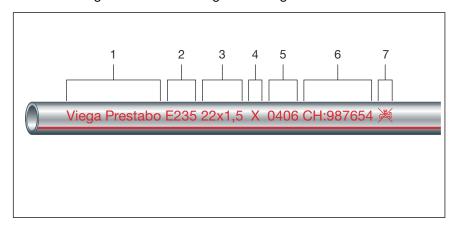
³⁾ siehe auch Dokument "Einsatzbereiche metallener Installationssysteme" auf der Viega Website

Die Dichtwerkstoffe des Pressverbindersystems unterliegen einer thermischen Alterung, die von der Medientemperatur und der Betriebsdauer abhängig ist. Je höher die Medientemperatur, desto schneller schreitet die thermische Alterung des Dichtwerkstoffs voran. Bei speziellen Betriebsbedingungen, z. B. bei industriellen Wärmerückgewinnungsanlagen, ist ein Abgleich der Angaben des Apparateherstellers mit den Angaben über das Pressverbindersystem erforderlich.

Vor dem Einsatz des Pressverbindersystems außerhalb der beschriebenen Einsatzbereiche oder bei Zweifeln über die richtige Werkstoffauswahl wenden Sie sich an Viega.

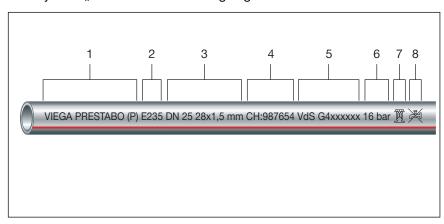
2.3.5 Kennzeichnungen an Bauteilen

Rohrkennzeichnung


Prestabo-Rohr galvanisch verzinkt	Prestabo-Rohr für Sonderanwendungen
rote durchgezogene Linie	rote gestrichelte Linie
rote Beschriftung	schwarze Beschriftung

Die Rohrkennzeichnungen enthalten wichtige Angaben zur Materialbeschaffenheit und Herstellung der Rohre. Die rote Linie auf den Rohren dient als Warnung: "Nicht für Trinkwasser geeignet!".

²⁾ siehe & "Regelwerke aus Abschnitt: Dichtelemente" auf Seite 4



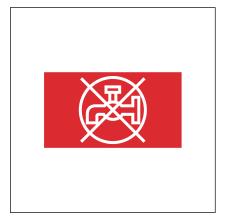
Die Bedeutung der Kennzeichnung ist wie folgt:

Abb. 6: Rohr galvanisch verzinkt

- 1 Systemhersteller / Systemname
- 2 DIN-Werkstoffnummer
- 3 dxs
- 4 Symbole der Rohrhersteller
- 5 Herstellungsdatum
- 6 Chargennummer
- 7 Symbol "Nicht für Trinkwasser geeignet!"

Abb. 7: Rohr innen und außen sendzimirverzinkt

- 1 Systemhersteller / Systemname
- 2 DIN-Werkstoffnummer
- 3 DN-Rohrnennweite und d x s
- 4 Chargennummer
- 5 Prüfzeichen / -nummer
- 6 Druckstufe
- 7 Geeignet für Sprinkler
- 8 Symbol "Nicht für Trinkwasser geeignet!"


Kennzeichnungen an Pressverbindern

Die Pressverbinder sind mit zwei farbigen Punkten markiert.

Der rote Punkt kennzeichnet die SC-Contur, an der bei einer versehentlich nicht verpressten Verbindung das Prüfmedium austritt.

Der blaue Punkt weist daraufhin, dass der Pressverbinder labs-frei ist.

Das rote Rechteck dient als Warnung: "Nicht für Trinkwasser geeignet!". Das Rechteck befindet sich an folgenden Stellen:

- auf dem Pressende des Pressverbinders
- auf dem Flansch des Flanschübergangs

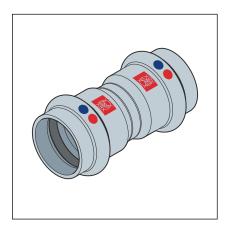


Abb. 8: Kennzeichnung "Nicht für Trinkwasser geeignet"

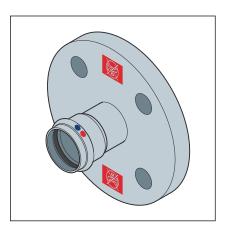


Abb. 9: Kennzeichnung "Nicht für Trinkwasser geeignet"

2.4 Verwendungsinformationen

2.4.1 Korrosion

Innenkorrosion (Dreiphasengrenze)

Bei metallenen Werkstoffen kann Korrosion im Bereich der Dreiphasengrenze (Wasser-Werkstoff-Luft) auftreten. Diese Korrosion kann vermieden werden, wenn die Anlage nach dem ersten Befüllen und Entlüften vollständig mit Wasser gefüllt bleibt. Wenn die Anlage nach der Installation nicht sofort in Betrieb genommen werden soll, eine Druckund Dichtheitsprüfung mit Luft oder inerten Gasen durchführen, siehe *Kapitel 3.4.7 "Dichtheitsprüfung" auf Seite 33.*

Prestabo-System in Kühlwasserkreisläufen

Das Prestabo-System in Kombination mit außen galvanisch verzinkten Rohren kann mit seinen Form- und Verbindungsteilen in allen geschlossenen Kühlwasserkreisläufen eingesetzt werden, in denen kein Sauerstoffeintrag während des Betriebs möglich ist.

Durch die Betriebsbedingungen in Kühlwasseranlagen kann es erforderlich sein, das Trägermedium mit einem Frostschutzmittel zu versehen. Bis zu einem Glykolanteil von 50 % am Gesamtwasserinhalt können die Standard-Dichtelemente aus EPDM verwendet werden. Für diesen Anwendungsfall sind innen und außen sendzimirverzinkte Viega Rohre nicht geeignet.

Das Wiederauffüllen eines Systems führt normalerweise nicht zu einem signifikanten Sauerstoffeintrag, siehe $\mbox{\ensuremath$

Der Sauerstoffgehalt soll bei salzarmem Wasser < 0,1 mg/l liegen, bei salzhaltigem Wasser < 0,02 mg/l , siehe % "Regelwerke aus Abschnitt: Korrosion" auf Seite 5.

Beim Einsatz in Kühlkreisläufen muss ein lückenloser, äußerer Korrosionsschutz aufgebracht werden, durch den korrosionsfördernde Einflüsse sicher verhindert werden. Dabei die Produktinformationen der Hersteller und die geltenden Richtlinien beachten, siehe \$, Regelwerke aus Abschnitt: Korrosion" auf Seite 5.

Außenkorrosion

Prestabo-Rohre und die Pressverbinder sind außen durch eine dünne galvanische Verzinkung geschützt. Diese Verzinkung schützt bei feuchter Umgebung jedoch nicht dauerhaft vor Außenkorrosion. Das System ist für die Verlegung in warmer und trockener Atmosphäre bestimmt. Bei fachgerechter Installation und bestimmungsgemäßer Verwendung kommen die Komponenten also im Regelfall nicht von außen mit Feuchtigkeit in Kontakt.

Dauerhafte Feuchtigkeit am Rohr

Dauerhafte Feuchtigkeit unmittelbar am Rohr entsteht z. B. durch folgende Gegebenheiten:

- durch Kondenswasser oder Niederschläge während der Bauphase
- Tauwasserbildung (z. B. beim Einsatz in Kühlkreisläufen)
- durch Putz- und Spritzwasser sowie Abwasser durch defekte Bodenabdichtungen etc.
- wenn Wasser bestimmungswidrig an die Rohrleitungs-Installation gelangt, z. B. durch einen Baumangel oder Wasserschaden im Gebäude

Schutzmaßnahmen gegen Außenkorrosion

Zum Schutz vor Außenkorrosion des Prestabo-Systems folgende Maßnahmen beachten:

- Rohrleitungen außerhalb von feuchtigkeitsgefährdeten Bereichen verlegen.
- Den Kontakt mit korrosiv wirkenden Baustoffen (z. B. Spachtelmasse oder Ausgleichsestrich) vermeiden.
- Die verlegten Rohrleitungen durch wasserundurchlässige Trennfolien im Fußbodenaufbau vor möglicher Feuchtigkeit, z. B. Estrichfeuchtigkeit, schützen. Die überlappenden Folienübergänge müssen dicht verklebt sein.
- Geschlossenzellige Dämmschläuche verwenden und fachgerecht abdichten. Dabei besonders alle Stoß- und Schnittkanten sorgfältig verkleben. Die Maßnahme ist allerdings kein Ersatz für gegebenenfalls notwendigen und zusätzlichen Korrosionsschutz.
- Bei Installationen, z. B. in industriellen Bereichen, die mit aggressiver Umgebungsluft belastet sind, die internen Werksvorgaben berücksichtigen.

Korrosion durch Putzwasser

In Bereichen, die eine tägliche Reinigung des Fußbodens erfordern (z. B. in Krankenhäusern), kann Korrosion auch dadurch ausgelöst werden, dass sichtbare Heizkörperanschlussleitungen aus dem Boden kommend mit Wasser und Reinigungsmitteln in Kontakt geraten. Das Wasser kann durch undichte Fugen zwischen Rohrleitung und Bodenbelag in die Dämmung eindringen. Dort kann es nicht mehr entweichen und führt zu einer dauerhaften Feuchtigkeit am Rohr, die zu Außenkorrosion führt.

Auch Desinfektionsmittel können eine korrosive Wirkung auf Rohrleitungen haben.

Empfohlene Schutzmaßnahme gegen Korrosion durch Putzwasser

- Heizkörperanschlüsse aus der Wand bevorzugen.
- Für Anschlüsse aus dem Boden kunststoffummantelte Prestabo-Rohre verwenden.
- Die Fugen zwischen Rohrleitung und Bodenbelag fachgerecht versiegeln. Silikonfugen regelmäßig warten.

Für die Verlegung des Prestabo-Systems im Fußbodenbereich und unter Putz empfiehlt Viega die Verwendung des PP-ummantelten Prestabo-Rohrs (Modell 1104). Um einen durchgängigen Korrosionsschutz sicherzustellen, müssen die Pressverbinder und Rohrenden zusätzlich mit einer Korrosionsschutzbinde versehen werden — z. B. Denso Densolen ET 100. Hierbei die entsprechenden Verarbeitungsrichtlinien beachten.

3 Handhabung

HINWEIS!

Korrosionsgefahr durch beschädigte Oberflächen

Die verzinkten Oberflächen der Komponenten dürfen nicht beschädigt werden (z. B. mit spitzen Gegenständen). Andernfalls besteht Korrosionsgefahr.

3.1 Transport

Prestabo-Rohre sind bei der Auslieferung an den Großhandel silikonfrei.

Lagern und transportieren Sie die Rohre bis zur Verwendung fachgerecht.

Beim Transport von Rohren Folgendes beachten:

- Rohre nicht über Ladekanten ziehen. Die Oberfläche könnte beschädigt werden.
- Rohre beim Transport sichern. Durch Verrutschen könnten die Rohre verbiegen.
- Schutzkappen an Rohrenden nicht beschädigen und erst unmittelbar vor der Montage entfernen. Beschädigte Rohrenden dürfen nicht mehr verpresst werden.

3.2 Lagerung

Viega gewährleistet, dass die Pressverbinder im Auslieferungszustand labs-frei sind.

Nehmen Sie Pressverbinder erst unmittelbar vor der Verwendung aus der bis dahin verschlossenen Originalverpackung.

Bei der Lagerung die Anforderungen der geltenden Richtlinien beachten, siehe & "Regelwerke aus Abschnitt: Lagerung" auf Seite 5:

- Komponenten sauber und trocken lagern.
- Für Belüftung sorgen.
- Komponenten nicht direkt auf dem Boden lagern.

- Mindestens drei Auflagepunkte für die Lagerung von Rohren schaffen.
- Rohre nicht mit Folien abdecken, Kondenswasserbildung vermeiden.
- Unterschiedliche Rohrgrößen möglichst getrennt lagern. Wenn keine getrennte Lagerung möglich ist, kleine Größen auf großen Größen lagern.
- Rohre unterschiedlicher Materialien getrennt lagern, um Kontaktkorrosion zu vermeiden.

3.3 Montageinformationen

3.3.1 Montagehinweise

Systemkomponenten prüfen

Durch Transport und Lagerung können Systemkomponenten beschädigt worden sein.

- Alle Teile prüfen.
- Beschädigte Komponenten austauschen.
- Beschädigte Komponenten nicht reparieren.
- Verschmutzte Komponenten dürfen nicht installiert werden.

3.3.2 Potenzialausgleich

GEFAHR! Gefahr durch elektrischen Strom

Ein Stromschlag kann zu Verbrennungen und schweren Verletzungen bis hin zum Tod führen.

Da alle Rohrleitungssysteme aus Metall elektrisch leitend sind, kann ein versehentlicher Kontakt mit einem Netzspannung führenden Teil dazu führen, dass das ganze Rohrleitungssystem und angeschlossene metallische Komponenten (z. B. Heizkörper) unter Spannung stehen.

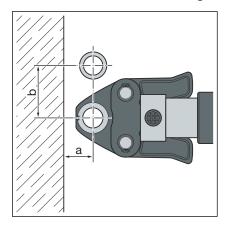
- Lassen Sie Arbeiten an der Elektrik nur durch Elektro-Fachhandwerker durchführen.
- Binden Sie Rohrleitungssysteme aus Metall immer in den Potenzialausgleich mit ein.

Der Errichter der elektrischen Anlage ist dafür verantwortlich, dass der Potenzialausgleich überprüft bzw. sichergestellt wird.

3.3.3 Zulässiger Austausch von Dichtelementen

Wichtiger Hinweis

Dichtelemente in Pressverbindern sind mit ihren werkstoffspezifischen Eigenschaften auf die jeweiligen Medien bzw. Einsatzbereiche der Rohrleitungssysteme abgestimmt und im Regelfall nur dafür zertifiziert.

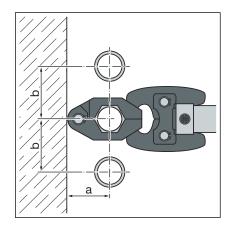

Der Austausch eines Dichtelements ist grundsätzlich zulässig. Das Dichtelement muss gegen ein labs-freies, werkstoffgleiches Dichtelement ausgetauscht werden & Kapitel 2.3.4 "Dichtelemente" auf Seite 11. Die Verwendung anderer Dichtelemente ist nicht zulässig.

In folgenden Situationen ist der Austausch eines Dichtelements zulässig:

 wenn das Dichtelement im Pressverbinder offensichtlich beschädigt ist und gegen ein werkstoffgleiches Viega Ersatz-Dichtelement ausgetauscht werden soll

3.3.4 Platzbedarf und Abstände

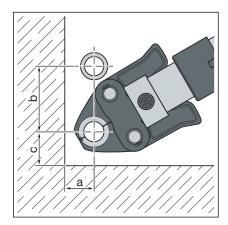
Pressen zwischen Rohrleitungen


Platzbedarf PT1, Typ 2 (PT2), PT3-EH, PT3-AH, Pressgun 4B, 4E, 5, 6, 6 Plus

d	12	15	18	22	28	35	42	54
a [mm]	20	20	20	25	25	30	45	50
b [mm]	50	50	55	60	70	85	100	115

Platzbedarf Picco, Pressgun Picco, Pressgun Picco 6, Pressgun Picco 6 Plus

d	12	15	18	22	28	35
a [mm]	25	25	25	25	25	25
b [mm]	55	60	60	65	65	65



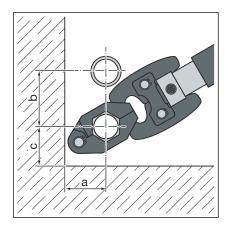
Platzbedarf Pressring

d	12	15	18	22	28	35	42	54
a [mm]	40	40	45	45	50	55	60	65
b [mm]	45	50	55	60	70	75	85	90

Pressen zwischen Rohr und Wand

Platzbedarf PT1, Typ 2 (PT2), PT3-EH, PT3-AH, Pressgun 4B, 4E, 5, 6, 6 Plus

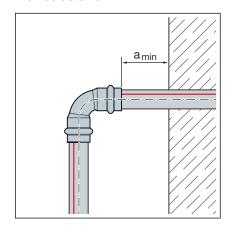
d	12	15	18	22	28	35	42	54
a [mm]	25	25	25	30	30	50	50	55
b [mm]	65	65	75	80	85	95	115	140
c [mm]	40	40	40	40	50	50	70	80


Platzbedarf PT1, Typ 2 (PT2), PT3-EH, PT3-AH, Pressgun 4B, 4E, 5, 6, 6 Plus

d	15	18
a [mm]	25	25
b [mm]	65	75
c [mm]	40	40

Platzbedarf Picco, Pressgun Picco, Pressgun Picco 6, Pressgun Picco 6 Plus

d	12	15	18	22	28	35
a [mm]	30	30	30	30	30	30
b [mm]	70	70	70	75	80	80
c [mm]	40	40	40	40	40	40



Platzbedarf Pressring

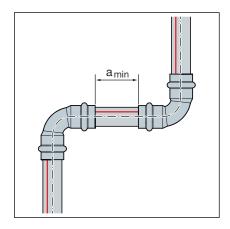
d	12	15	18	22	28	35	42	54
a [mm]	40	40	45	45	50	55	60	65
b [mm]	45	50	55	60	70	75	85	90
c [mm]	35	35	40	40	45	50	55	65

Wandabstand

Mindestabstand bei d12-54

Pressmaschine	a _{min} [mm]	
PT1	45	
Typ 2 (PT2)		
Typ PT3-EH		
Typ PT3-AH	50	
Pressgun 4E / 4B	50	
Pressgun 5		
Pressgun 6 / 6 Plus		
Picco / Pressgun Picco		
Pressgun Picco 6 / Pressgun Picco 6 Plus	35	

Abstand zwischen den Verpressungen



HINWEIS! Undichte Pressverbindungen durch zu kurze

Wenn zwei Pressverbinder auf einem Rohr ohne Abstand aneinander gesetzt werden sollen, darf das Rohr nicht zu kurz sein. Wenn das Rohr beim Verpressen nicht bis zur vorgesehenen Einstecktiefe im Pressverbinder steckt, kann die Verbindung undicht werden.

Bei Rohren mit dem Durchmesser d12–28 muss die Rohrlänge mindestens der Gesamteinstecktiefe beider Pressverbinder entsprechen.

Mindestabstand bei Pressbacken d12-54

d	a _{min} [mm]
12	0
15	0
18	0
22	0
28	0
35	10
42	15
54	25

Z-Maße

Die Z-Maße finden Sie auf der entsprechenden Produktseite im Online-Katalog.

3.3.5 Benötigtes Werkzeug

Für die Herstellung einer Pressverbindung werden folgende Werkzeuge benötigt:

- Rohrabschneider oder feinzahnige Metallsäge
- Entgrater und Farbstift zum Anzeichnen
- Pressmaschine mit konstanter Presskraft
- Pressbacke oder Pressring mit dazugehöriger Gelenkzugbacke, passend für den Rohrdurchmesser und mit geeignetem Profil

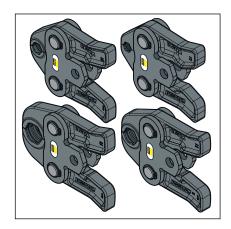


Abb. 10: Pressbacken

Zur Verpressung empfiehlt Viega die Verwendung von Viega Systemwerkzeugen.

Die Viega Systempresswerkzeuge wurden speziell für die Verarbeitung der Viega Pressverbindersysteme entwickelt und darauf abgestimmt.

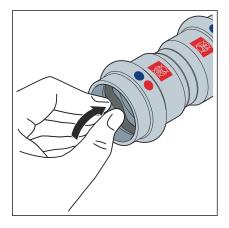
3.4 Montage

3.4.1 Dichtelement austauschen

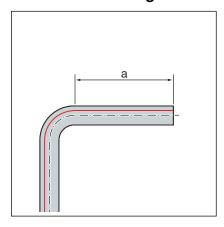
Liegt zum Zeitpunkt der Verlegung der Anschlussleitung zum Einsatzbereich der Solarthermie der Kollektortyp (Flach-/Vakuum-Röhrenkollektoren) noch nicht fest, empfiehlt Viega FKM-Dichtelemente in den Pressverbindern zu verwenden. Das Kapitel & Kapitel 2.3.4 "Dichtelemente" auf Seite 11 beachten.

Dichtelement entfernen

Verwenden Sie keine spitzen oder scharfkantigen Gegenstände zum Entfernen des Dichtelements, die das Dichtelement oder die Sicke beschädigen können.


Liegt zum Zeitpunkt der Verlegung der Anschlussleitung zum Einsatzbereich der Solarthermie der Kollektortyp (Flach-/Vakuum-Röhrenkollektoren) noch nicht fest, empfiehlt Viega FKM-Dichtelemente in den Pressverbindern zu verwenden. Das Kapitel & Kapitel 2.3.4 "Dichtelemente" auf Seite 11 beachten.

Das Dichtelement aus der Sicke entfernen.



Dichtelement einsetzen

- Ein neues, unbeschädigtes Dichtelement in die Sicke einsetzen.
- Sicherstellen, dass sich das Dichtelement vollständig in der Sicke befindet.

3.4.2 Rohre biegen

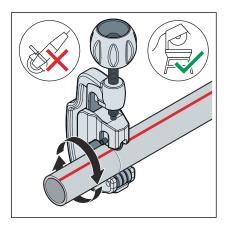
Blanke Prestabo-Rohre in den Größen d12, 15, 18, 22 und 28 können kalt mit handelsüblichen Biegevorrichtungen (Radius mindestens 3,5 x d) gebogen werden.

Die Rohrenden (a) müssen mindestens 50 mm lang sein, damit die Pressverbinder korrekt aufgesteckt werden können.

3.4.3 Rohre ablängen

HINWEIS!

Undichte Pressverbindungen durch beschädigtes Material!


Durch beschädigte Rohre oder Dichtelemente können Pressverbindungen undicht werden.

Beachten Sie die folgenden Hinweise, um Beschädigungen an Rohren und Dichtelementen zu vermeiden:

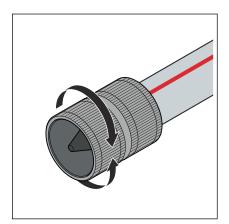
- Verwenden Sie zum Ablängen keine Trennscheiben (Winkelschleifer) oder Schneidbrenner.
- Verwenden Sie keine Fette und Öle (wie z. B. Schneidöl).

Für Informationen zu Werkzeugen siehe auch *Ausgehalten Kapitel 3.3.5 "Benötigtes Werkzeug" auf Seite 23.*

Das Rohr mit einem Rohrabschneider oder einer feinzahnigen Metallsäge möglichst rechtwinklig durchtrennen, um eine vollständige und gleichmäßige Rohreinstecktiefe sicherzustellen.

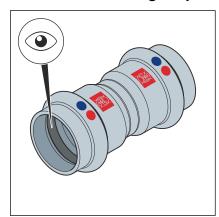
Riefen auf der Rohroberfläche vermeiden.

3.4.4 Rohre entgraten

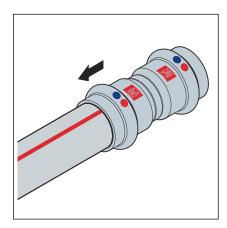

Die Rohrenden müssen nach dem Kürzen innen und außen sorgfältig entgratet werden.

Durch das Entgraten wird vermieden, dass das Dichtelement beschädigt wird oder der Pressverbinder bei der Montage verkantet. Viega empfiehlt, einen Entgrater zu verwenden (Modell 2292.2).

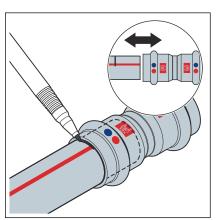
HINWEIS! Beschädigung durch falsches Werkzeug!


Benutzen Sie zum Entgraten keine Schleifscheiben oder ähnliches Werkzeug. Die Rohre können dadurch beschädigt werden.

Das Rohr innen und außen entgraten.

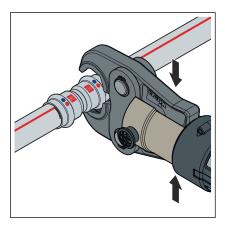


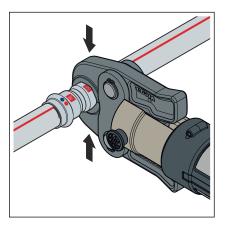
3.4.5 Verbindung verpressen



Voraussetzungen:

- Das Rohrende ist nicht verbogen oder beschädigt.
- Das Rohr ist entgratet.
- Im Pressverbinder befindet sich das richtige Dichtelement. EPDM = schwarz glänzend
- Das Dichtelement ist unbeschädigt.
- Das Dichtelement befindet sich vollständig in der Sicke.


Den Pressverbinder bis zum Anschlag auf das Rohr schieben.


- Die Einstecktiefe markieren und durch vollständiges abziehen und erneutes aufstecken des Pressverbinders kontrollieren.
- Die Pressbacke in die Pressmaschine einsetzen und den Haltebolzen bis zum Einrasten einschieben.

INFO! Beachten Sie die Anleitung des Presswerkzeugs.

- Die Pressbacke öffnen und rechtwinklig auf den Pressverbinder setzen.
- Die Einstecktiefe anhand der Markierung kontrollieren.
- Sicherstellen, dass die Pressbacke mittig auf der Sicke des Pressverbinders sitzt.

- Den Pressvorgang durchführen.
- Die Pressbacke öffnen und entfernen.
 - □ Die Verbindung ist verpresst.

3.4.6 Flanschverbindungen

Im gezeigten Pressverbindersystem sind Flanschverbindungen in den Größen 35 bis 54 mm möglich.

Die Montage von Flanschverbindungen darf nur von qualifiziertem Personal durchgeführt werden. Die Qualifizierung von Personal für die Montage von Flanschverbindungen kann z. B. in Anlehnung an geltende Richtlinien erfolgen, siehe & "Regelwerke aus Abschnitt: Flanschverbindung herstellen" auf Seite 5.

- Ein entsprechender Ausbildungsabschnitt zur sachgerechten Flanschverbindungsmontage in der beruflichen Ausbildung (des Arbeits-/Fachpersonals) mit qualifiziertem Abschluss sowie eine erfolgreiche regelmäßige Anwendung gelten als hinreichender Nachweis.
- Anderen Mitarbeitern ohne entsprechende fachspezifische Ausbildung (z. B. Betriebspersonal), die Flanschverbindungen montieren, muss durch theoretische und praktische Schulungsmaßnahmen Sachkunde vermittelt werden, dies muss dokumentiert werden.

Unterlegscheiben

Die Vorteile beim Einsatz von gehärteten Unterlegscheiben sind:

- Definierte Reibfläche bei der Montage.
- Definierte Rauigkeit bei der Berechnung und dadurch Reduzierung der Streuweiten des Anzugsmoments, wodurch rechnerisch eine größere Sechskantschraubenkraft erzielt werden kann.

Flanscharten

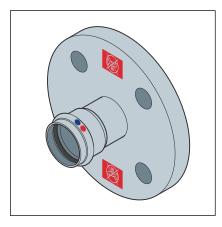


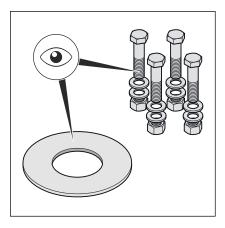
Abb. 11: Festflansch

Flanschverbindung herstellen

Festflansch

Stahl unlegiert, verzinkt

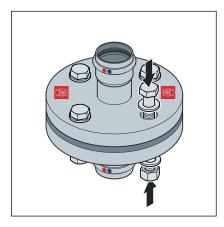
Pressanschluss aus Stahl unlegiert, verzinktModell 1159LF: 35 bis 54 mm (PN10/16)


Stellen Sie immer erst die Flanschverbindung und dann die Pressverbindung her.

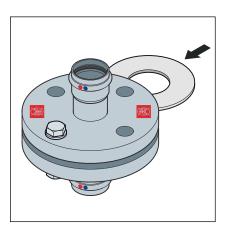
Gegebenenfalls vorhandene temporäre Beschichtungen auf den Flanschdichtflächen vor der Montage rückstandsfrei entfernen, dazu Reinigungsmittel und eine geeignete Drahtbürste verwenden.

HINWEIS! Beim Austausch von Dichtungen darauf achten, die alte Dichtung vollständig von der Flanschdichtfläche zu entfernen, ohne die Flanschdichtfläche zu beschädigen.

Darauf achten, dass die Flanschdichtflächen sauber, unbeschädigt und eben sind. Insbesondere dürfen keine radial verlaufenden Oberflächenbeschädigungen wie Riefen oder Schlagstellen vorhanden sein.



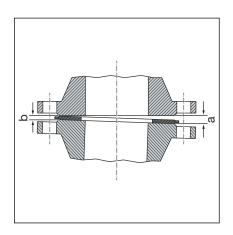
- Die Sechskantschrauben, Muttern und Unterlegscheiben müssen sauber und unbeschädigt sein sowie den Vorgaben zu Mindest-Sechskantschraubenlänge und Festigkeitsklasse entsprechen, siehe ∜ "Erforderliche Anzugsmomente" auf Seite 32.
- Bei der Demontage ausgebaute Sechskantschrauben, Muttern und Unterlegscheiben bei Beschädigungen durch neue ersetzen.


- Die Dichtung muss sauber, unbeschädigt und trocken sein. Keine Haftmittel und Montagepasten für Dichtungen verwenden.
- Gebrauchte Dichtungen nicht wiederverwenden.
- Keine Dichtungen mit Knickstellen verwenden, da sie ein Sicherheitsrisiko darstellen.
- Sicherstellen, dass Dichtungen frei von Fehlern und Mängeln sind und die Herstellerinformationen eingehalten werden.

- Die folgenden Flanschelemente mit geeignetem Schmiermittel schmieren:
 - Sechskantschraubengewinde
 - Unterlegscheibe
 - Mutternauflage

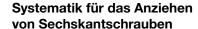
HINWEIS! Die Herstellerinformation zu Einsatz- und Temperaturbereich des Schmiermittels beachten.

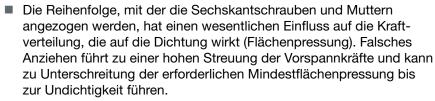
Dichtelement einbauen und zentrieren



Die richtige Montage von Flanschverbindungen setzt parallel fluchtende Flanschblätter ohne Mittenversatz voraus, die ein positionsgerechtes Einbringen des Dichtelements ohne Beschädigung erlauben.

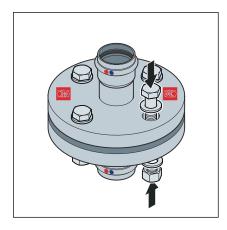
Die Dichtflächen so weit auseinanderdrücken, dass die Dichtung ohne Kraftaufwand und unbeschädigt eingebracht werden kann.

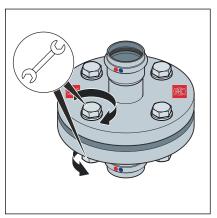

Die Klaffung (Nichtparallelität der Dichtflächen) vor dem Anziehen der Sechskantschrauben ist unbedenklich, wenn die zulässige Klaffung nicht überschritten wird.



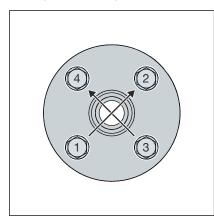
DN	zulässige Klaffung a-b [mm]
32–50	0,6

- Die Klaffung von der klaffenden Seite (a) aus beseitigen.
- Im Zweifelsfall die Flansche ohne Einlegen einer Dichtung versuchsweise durch Anziehen der Sechskantschrauben beiziehen, um eine Parallelität und Dichtflächenabstand von ca. 10 % des Nenndrehmoments zu erreichen.
 - Die Klaffung ist unzulässig, wenn die Flanschposition nicht ohne hohen Kraftaufwand erreicht werden kann.




Nach dem Anziehen der Mutter sollten wenigstens zwei, aber nicht mehr als fünf Gewindegänge am Sechskantschraubenende überstehen.

- Die Sechskantschrauben so einbauen, dass alle Sechskantschraubenköpfe auf einer Flanschseite angeordnet sind.
- Bei horizontal angeordneten Flanschen die Sechskantschrauben von oben durchstecken.
- Schwergängige Sechskantschrauben durch leichtgängige ersetzen.



Anzugsreihenfolge

- Alle Sechskantschrauben über Kreuz mit 30 % des Sollanzugsmoments anziehen.
- Alle Sechskantschrauben wie in Schritt 1 mit 60 % des Sollanzugsmoments anziehen.
- Alle Sechskantschrauben wie in Schritt 1 mit 100 % des Sollanzugsmoments anziehen.
- Alle Sechskantschrauben nochmals mit vollem Sollanzugsmoment umlaufend nachziehen. Diesen Vorgang so oft wiederholen, bis sich die Muttern bei Aufbringen des vollen Anzugsmoments nicht mehr weiterdrehen lassen.

Erforderliche Anzugsmomente

Anzugsmomente Prestabo LF-Flanschübergänge PN 10/16

Modell	DN	Artikel- nummer	Gewinde	Anzugsmo- ment mind. erforderlich [Nm]	Anzugsmo- ment max. zulässig [Nm]	Sechskant- schrauben- länge (mm)	Festigkeits- klasse
1159LF	32	716 851 ¹	M16	69	202	70	8.8
	40	716 868 ¹		77			
	50	716 875 ¹		87			

Die Angaben zur Erfüllung der Anforderungen der Dichtheitsklasse L0,01 (TA Luft) wurden nach geltender Norm berechnet und gelten ausschließlich bei Verwendung von Viega Artikeln, siehe auch $\mbox{\ensuremath{,}}\ \mbox{\ensuremath{,}}\ \mbox{\ensurema$

¹ Zur Verwendung mit Montageset Artikelnummer 494063

Flanschverbindung lösen

Vor Beginn der Demontage einer bestehenden Flanschverbindung gegebenenfalls die Freigabe und einen Arbeitserlaubnisschein vom zuständigen Betrieb einholen, dabei Folgendes beachten:

- Der Anlagenabschnitt muss drucklos und vollständig gespült sein.
- Ein- oder Anbauteile die nicht separat gehalten werden, vor dem Lösen der Flanschverbindung sichern. Dies gilt auch für Befestigungssysteme wie Federhänger und -stützen.
- Das Lösen von Sechskantschrauben bzw. Muttern auf der körperabgewandten Seite beginnen, die restlichen Sechskantschrauben leicht lösen und erst vollständig demontieren, wenn sichergestellt ist, dass keine Gefahr vom Rohrleitungssystem ausgeht. Wenn eine Rohrleitung unter Spannung steht, droht ein Ausschlagen der Rohrleitung.
- Die Sechskantschrauben bzw. Muttern in mindestens zwei Durchgängen kreuzweise lösen.
- Offene Strangenden mit Blindverschlüssen verschließen.
- Demontierte Rohrleitungen nur in verschlossenem Zustand transportieren.
- Beim Austausch von Dichtungen darauf achten, die alte Dichtung vollständig von der Flanschdichtfläche zu entfernen, ohne die Flanschdichtfläche zu beschädigen.

HINWEIS! Vorsicht bei der Verwendung eines Trennschleifers!

Beim Lösen defekter Sechskantschrauben und Muttern mithilfe eines Trennschleifers entstehen Funken, die sich in das Rohrmaterial einbrennen und Korrosion verursachen können.

3.4.7 Dichtheitsprüfung

Diese Prüfung an der fertig gestellten, jedoch noch nicht verdeckten Anlage durchführen.

Die geltenden Richtlinien beachten, siehe $\mbox{\ensuremath{\slinebeit spr"}}$ "Regelwerke aus Abschnitt: Dichtheitspr" auf Seite 5.

Auch für Nicht-Trinkwasserinstallationen die Dichtheitsprüfung entsprechend den geltenden Richtlinien durchführen, siehe $\mbox{\constraints}$, "Regelwerke aus Abschnitt: Dichtheitsprüfung" auf Seite 5.

Das Ergebnis dokumentieren.

Um Korrosion nach der Durchführung einer Dichtheitsprüfung mit Wasser zu vermeiden, muss die Anlage vollständig gefüllt bleiben.

Die Anforderungen an das Füll- und Ergänzungswasser entsprechend den geltenden Richtlinien beachten, siehe $\mbox{\ensuremath{$

3.5 Entsorgung

Produkt und Verpackung in die jeweiligen Materialgruppen (z. B. Papier, Metalle, Kunststoffe oder Nichteisenmetalle) trennen und gemäß der national gültigen Gesetzgebung entsorgen.

